Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR.

نویسندگان

  • J J Caguiat
  • A L Watson
  • A O Summers
چکیده

Expression of the Tn21 mercury resistance (mer) operon is controlled by a metal-sensing repressor-activator, MerR. When present, MerR always binds to the same position on the DNA (the operator merO), repressing transcription of the structural genes merTPCAD in the absence of Hg(II) and inducing their transcription in the presence of Hg(II). Although it has two potential binding sites, the purified MerR homodimer binds only one Hg(II) ion, employing Cys82 from one monomer and Cys117 and Cys126 from the other. When MerR binds Hg(II), it changes allosterically and also distorts the merO DNA to facilitate transcriptional initiation by sigma70 RNA polymerase. Wild-type MerR is highly specific for Hg(II) and is 100- and 1, 000-fold less responsive to the chemically related group 12 metals, Cd(II) and Zn(II), respectively. We sought merR mutants that respond to Cd(II) and obtained 11 Cd(II)-responsive and 5 constitutive mutants. The Cd(II)-responsive mutants, most of which had only single-residue replacements, were also repression deficient and still Hg(II) responsive but, like the wild type, were completely unresponsive to Zn(II). None of the Cd(II)-responsive mutations occurred in the DNA binding domain or replaced any of the key Cys residues. Five Cd(II)-responsive single mutations lie in the antiparallel coiled-coil domain between Cys82 and Cys117 which constitutes the dimer interface. These mutations identify 10 new positions whose alteration significantly affect MerR's metal responsiveness or its repressor function. They give rise to specific predictions for how MerR distinguishes group 12 metals, and they refine our model of the novel domain structure of MerR. Secondary-structure predictions suggest that certain elements of this model also apply to other MerR family regulators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein.

The Bacillus subtilis TnrA transcription factor belongs to the MerR family of proteins and regulates gene expression during nitrogen-limited growth. When B. subtilis cells are grown with excess nitrogen, feedback-inhibited glutamine synthetase forms a protein-protein complex with TnrA that prevents TnrA from binding to DNA. The C-terminal region of TnrA is required for the interaction with glut...

متن کامل

The Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells

Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...

متن کامل

In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants.

Regulation of transcriptional initiation of the Tn21 mercury resistance (mer) operon occurs at the divergent promoter region lying between the structural genes (merTPCAD) and a regulatory gene (merR). During repression, both promoters are negatively regulated by MerR bound to a dyadic operator located between the -10 and -35 hexamers of PTPCAD. Upon Hg(II) induction, MerR activates transcriptio...

متن کامل

DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli.

MerR-like DNA distortion mechanisms have been proposed for a variety of stress-responsive transcription factors. The Escherichia coli ZntR protein, a homologue of MerR, has recently been shown to mediate Zn(II)-responsive regulation of zntA, a gene involved in Zn(II) detoxification. To determine whether the MerR DNA distortion mechanism is conserved among MerR family members, we have purified Z...

متن کامل

Study of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants

   Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 11  شماره 

صفحات  -

تاریخ انتشار 1999